Unified Closed Form Inverse Kinematics for the KUKA youBot
نویسندگان
چکیده
Mobile manipulators are of high interest to industry because of the increased flexibility and effectiveness they offer. The combination and coordination of the mobility provided by a mobile platform and of the manipulation capabilities provided by a robot arm leads to complex analytical problems for research. These problems can be studied very well on the KUKA youBot, a mobile manipulator designed for education and research applications. Issues still open in research include solving the inverse kinematics problem for the unified kinematics of the mobile manipulator, including handling the kinematic redundancy introduced by the holonomic platform of the KUKA youBot. As the KUKA youBot arm has only 5 degrees of freedom, a unified platform and manipulator system is needed to compensate for the missing degree of freedom. We present the KUKA youBot as an 8 degree of freedom serial kinematic chain, suggest appropriate redundancy parameters, and solve the inverse kinematics for the 8 degrees of freedom. This enables us to perform manipulation tasks more efficiently. We discuss implementation issues, present example applications and some preliminary experimental evaluation along with discussion about redundancies.
منابع مشابه
The KUKA Control Toolbox : motion control of KUKA robot manipulators with MATLAB
The KUKA Control Toolbox (KCT) is a collection of MATLAB functions developed at the University of Siena, for motion control of KUKA robot manipulators. The toolbox, which is compatible with all 6 DOF small and low-payload KUKA robots that use the Eth.RSIXML, runs on a remote computer connected with the KUKA controller via TCP/IP. KCT includes more than 40 functions, spanning operations such as ...
متن کاملSolution Algorithm of Inverse Kinematics Problem for Kuka KRC3 Robots
In this paper the solution algorithm of inverse kinematics problem for KUKA KRC3 robots will be presented. Creating of this algorithm is fundamental problem of future computational intelligence for these robots. The problem of computing the joint variables corresponding a specified location of end-effector is called inverse kinematics problem. This algorithm was derived and implemented into the...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملKinematical and Dynamical Models of KR 6 KUKA Robot , including the kinematic control in a parallel processing platform
This chapter presents the study and modelling of KR 6 KUKA Robot, of the Robotics Laboratory, Federal University of Rio de Janeiro, see fig 1. The chapter shows the CAD model (Computer Aided Design), the direct kinematics, the inverse kinematics and the inverse dynamical model. The direct kinematic is based in the use of homogeneous matrix. The inverse kinematics uses the quadratic equations mo...
متن کامل